Noise shielding surrogate models using dynamic artificial neural networks
نویسندگان
چکیده
The optimal design methodologies in aeronautics are known to be constrained by the computational burden required direct simulations. Due this reason, development of efficient metamodelling techniques represents nowadays an imperative need for designers. In fact, surrogate models has been demonstrated significantly reduce number high-fidelity evaluations, thus alleviating computing effort. Over last years, aeronautical designers community switched from a approach predominantly based on simulations extensive use metamodels. Recently, further improve efficiency, several dynamic approaches parameters self-tuning have developed support metamodel construction. This work deals with Artificial Neural Network noise shielding unconventional aircraft configurations. Here, insertion loss field Blended Wing Body is reproduced means advanced machine learning techniques. relevant framework calculation emitted innovative configurations suitable corrections existing well-assessed prediction tools. algorithm accurate and efficient, observed performance discloses possibility implement numerical strategies reliable robust
منابع مشابه
Surrogate modeling of deformable joint contact using artificial neural networks.
Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS
In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavi...
متن کاملNoise Classification of Aircrafts using Artificial Neural Networks
In this paper an algorithm for the classification of aircrafts composing the commercial fleet currently operating in the Chilean airspace is described. This classification is based on certain acoustic descriptors obtained at a specific noise monitoring point, which are used as inputs for a Feed-Forward Artificial Neural Network. As a result, determined classification groups for the evaluated ai...
متن کاملMonitoring of Regional Low-Flow Frequency Using Artificial Neural Networks
Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NOISE-CON ... proceedings
سال: 2021
ISSN: ['0736-2935']
DOI: https://doi.org/10.3397/in-2021-3008